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The Scattering of X-rays 
by Face Centred Cubic Crystals Containing Condensed Sheets of Interstitial Atoms 
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A calculation has been made of the distribution in reciprocal space of X-rays scattered by a face centred 
cubic crystal containing sheets of interstitial atoms condensed at random to form stacking faults. 
It is shown that these faults produce asymmetric peaks at non-integral values of hkl and the appear- 
ance of peaks at the position corresponding to reflexion from the crystal of opposite stacking sequence. 
In neutron-irradiated crystals where interstitial atoms condense on { 111 } planes these effects should be 
detectable. 

Introduction 

There are many references in the literature to defect 
clusters produced in copper by neutron irradiation and 
the supposition is made that clusters greater than 50 A 
in diameter result from interstitial condensation on 
{111} planes (Barnes & Mazey, 1960; Makin, Whap- 
ham & Minter, 1960, 1961; Mazey, Barnes & Howie, 
1962). 

Makin & Manthorpe (1963) found that after irradia- 
tion to 2.5 x 1018 nvt (>  1 MeV) at 27°C the concen- 
tration of point defects in these clusters is 2.8 x 10 -4. 

It is probable that irradiation in the 1019-10 z0 nvt 
dose range will produce sufficient concentration of 
these defects for direct observation by X-ray diffraction. 

Johnson (1962) calculated the intensity distribution 
of X-rays scattered by a face-centred cubic crystal con- 
taining extrinsic stacking faults, but he assumed that 
only one condensation can take place between any two 
close-packed layers of the original crystal; thus in the 
standard notation for cubic close-packing, if a fault 
produces a C layer after an A layer the following 
layer must be B. 

In the case of irradiation damage the condensation 
will be a continuous process and successive condensa- 
tions are possible. 

In this paper the intensity distribution in reciprocal 
space is calculated assuming that interstitial atoms are 
continually condensing on one set of {111} planes. It 
is assumed that the fault completely covers the plane 
and that the crystal is large enough for particle size 
effects to be ignored. 

Theory 

The usual transformation to hexagonal axes is made 
(Paterson, 1952) so that two axes are along (110) and 
(0 i l )  in the close packed layers while the third axis is 
normal to these layers. 

The relation between the Miller indices in the hex- 
agonal lattice and in the cubic lattice is 

hhex = ½( -- hc + kc) 

khex = ½( -- kc +/c) 

/ h e x  = (hc + kc + lc) • 

The method of calculation is based on that of Wilson 
(1942) for growth faults in cobalt in which it is shown 
that the diffracted intensity from a mono-dimensionally 
disordered layer structure can be written (when crys- 
tal size effects are ignored), 

+ ~ 2zHml 
l(hkl)  = 6(H - h) 6(K - k) Z Jm exp 3 ' 

- -  o c ~  

or, equivalently, 

I (HK1)=(~(H-h)  6 ( K - k )  J0+2 ~ ( J m )  c o s - - - ~ - - -  

- 2 Z J ( J m )  sin ml , (l) 
1 

where hkl are continuous variables based on the recipro- 
cal of the hexagonal lattice defined above, with integral 
values H, K, and L. The factor ½ occurs in the exponent 
because I refers to a cell three layers high. Jm is the 
average value of the product FtFI+m* wherej  runs over 
all layers in the crystal separated by m interlayer spac- 
ings. 

Evaluation Of Jra 
Let ~ be the (random) probability that a condensed 

layer forms, after any given layer. If this layer is A the 
succeeding layer will be B unless there is an odd num- 
ber of successive condensations after A. Thus the pro- 
bability that the layer sequence is AB is 

1 
1 - 0(+ 0 ( 2  _ 0(3 _~_ 0(4  _ . . .  = . . . . . . .  . 

1+0( 
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The packing sequence in the crystal leading to the 
mth layer being of a particular type can be written" 

A 

Laye r  m I 
m - 2  C 

A 

I-./; ~ B 

B~ 

I A  

f ' ~  p 
~ - ~  

B 
/;. 

~../~ C 

A ~.................. i~ 

/r 

A ~  

I B 

c ~......~ c 
~..~ ~ A  

~ C  

where/3 - 
I + ~  

The probability of the mth layer being A can be 
written from these sequences as: 

Pare = flPam_2 + (I fl)2 n p c  - Pro-2 +/3(1 - fl) m - - 2 "  

From the two additional relations: 

Pare-, = tiPS-2 + (I - fl)PC_ 3 

Pare_ 2 = 1 - PBm_ 2 - PCm_2, 
the difference equation for PA m can be written: 

Pa m + (1- /3)  PmA_I + (1 -- 2/3) Pma_2 = 1 -/3(/3-# ½). (2) 

This equation can be solved for positive values of m 
in the usual way by writing Pam=a+bxra which leads to 

a = ~  and x2+(1 - / 3 ) x +  1 - 2 / 3 = 0 .  (3) 

The roots of the quadratic equation are: 

½{-(m-fl)+_ l / - 3  + 6/3+/3z-}. 

For values of/3 less than 2~/3-3  (a<  V3/2) these 
roots are complex and can be written: 

x = Re +iv , 
where 

R = ( 1 - 2 f l )  + 
R cos 7= - ( 1 - f l ) / 2  

R sin y = ( 3 - 6 f l - f 1 2 / 2 .  

The solution of (2) is then: 

P~ = ~ + bt R d  y + b2Re -~ . 

The coefficients bl and b2 can be found by using as 
boundary conditions the state of the zero and first 
layers for the three cases P~, Pn a, P~,. When this is 
done we have specific values of the probabilities to in- 
sert into the expression for Jm which is, for positive m, 

i P~ F.F~* + P~F~F:* + P~F.Fc* 
Jm=~ +P] FnFa* + PgFnFn* + P~FBFc* 

+ pc FcFA. + pCFcFn. + pCFcFc. 
(4) 

The F's  are the layer structure factors, and, taking 
the X-ray scattering factor as unity, can be written: 

where 

FA=I  
F B  = e 1~ 

Fc = e -t~ 

27c  

09= -~3- ( H -  K) .  

Substitution in (4) gives: 
Jm = P'4A + p CAe-S¢ + p nAel~ 

Substitution of the explicit values for the probabilities 
gives" 

Jm = 1 for H - K = 3 N  
and for H -  K =  3N + 1 

_ R m 
- -  (sin m y + 2 R  sin ( m -  1)y) ~(Jm) 2R sin y 

+ [/3(2fl- 1)R m sin my 
J (Jm)  = 

2R sin ? 
For fl_> 2 V3 - 3 the roots of (3) are real and the solu- 

tion of (2) is written: 

Pam= ½+ blpm + b2qm , 
where 

p = ½ { - ( 1 - f l ) +  V - 3 + 6 f l + f l / } ,  

q = ½ { S ( 1 - f l ) -  1/ -3+6/3+/3z  }. 
The boundary conditions are identical with those for 

complex roots of equation (3) and the b's are found 
in the same way. 

Insertion of explicit values for the probabilities into 
(4) leads to 

Jra= 1, for H -  K =  3N, 
and, for H - K = 3 N +  1, 

l {(2q+ l ) p m - ( 2 p +  l )qm} ~(Jm) = 2 ( p - q )  

J ( J m ) =  ~ l /Z(1-2f l )  { } 2 ( p - q )  p m _ q m  . 

Evaluation o f  intensity distribution 
The values of the real and imaginary parts of Jm are 

inserted into (1) and by using the general summations: 

.~" x m COS m~p = x c o s  ( / 9 -  x 2 

m=l 1 - 2 x  cos ~p+x 2 
oo 

,S x m sin m~0 = x sin ~0 
.,=1 1 - 2 x c o s  ~p+x 2 ' 
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and expressing the products of trigonometrical expres- 
sions as sums, the following expressions are obtained 
for the roots of (2), complex and real respectively: 

, { 
I(HKl) = 1 + 1 - 2R cos A + R E R sin A 

( '  )} 2R--si-~/+cot ' / ) + ( R c o s A - R  2) (1 _+ 1/3(2fl- 1 ) 2 R  sin y 

- + cot 7 + 1 - 2 R c o s B + R  2 R s i n B  2 R s i n y  

+(R cos B - R 2 ) ( 1 - T  - ~ 3 ( 2 f l - 1 ) ) }  
2R sin 7 ' 

where 
2nl 

A = 7 + 0 ,  B = y - O ,  O -  - 
3 ' 

and 

1 
t (HKI)= 1 + - - - -  

p - q  

(2p+  l)(q cos O-q2)-~ I /3(1-2fl)q sin 0 
x 1 - 2 q  cos O+q 2 

(2q+ l)(q cos0-pE)-T - ~/3_!1 - 2fl)p sin0[ 
1 - 2 p  cos O+p 2 J 

Machine computations have been carried out to de- 
termine the line profiles as the number of condensed 
sheets increase. The following effects emerge. 

(1) Assymetric line profiles are produced with peak 
shifts away from integral values of l towards l=  
3N+ 3/2. Simultaneously reflexions, whose profiles are 
also asymmetric, appear at the positions corresponding 
to reflexions from a crystal which has the packing 
sequence CBA. 

(2) For c~ > ½ the twin and normal peaks coalesce to 
an asymmetric peak displaced from 1 = 3N+ 3/2 toward 
the position of the normal peak. 

(3) At the limit (~= 1) the intensity distribution is 
symmetric about 1 -- 3N+ 3/2. 

These effects are illustrated in Fig. 1, where the cal- 
culated profiles for various value of ~ are shown. 

At low fault densities the present analysis should 
agree with that of Johnson, but the predicted be- 
haviour from the two calculations is quite different. 
Johnson finds a shift of the peak away from the twin 
reflexion position for low fault densities whereas the 
present analysis predicts a continuous movement 
toward the twin position as the fault probability in- 
creases, and the appearance of a peak at the twin posi- 
tion immediately a fault is introduced. 

Conclus ion 

In an irradiated crystal these condensation faults, if 
they occur, will be distributed with equal probability 
on all four {111} planes so that the observed effects 
will be a superposition of those due to faults on each 
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Fig. 1. Variation of reflexion profiles, with condensation 
probability. 

plane. However the appearance of reflexions at the 
twin position should be characteristic of this cluster 
formation. For defect densities of the order of those 
produced by irradiation the ratio of the peak intensities 
of the normal and twin spots are given below. 

IN/IT 
0"001 2000 
0"002 1000 
0"005 400 
0"01 200 

They should therefore be detectable. 

I wish to thank Professor J .M.Cowley for many 
helpful discussions and Mrs Suzanne Hogg for carry- 
ing out the roaching computations. 
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